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The Schrödinger equation describes the quantum-mechanical behavior of particles, making it the most
fundamental equation in chemistry. It is too difficult to solve analytically for all but the simplest sys-
tems. However, accurately solving the equation for various quantum physical systems, particularly those
with complex potential landscapes, is crucial for advancements in quantum chemistry, condensed matter
physics and material science, as the wave function of a given system allows the computation of any of its
properties [Scherbela, Reisenhofer, et al. 2022]. In recent years, tools from deep learning have been used
to great effect to improve the quality of computational quantum physics [Carleo and Troyer 2017]. For
the study of chemistry in particular, it is the quantum behavior of electrons that matters, which imposes
certain constraints on the possible solutions of the Schrödinger equation. The use of deep neural networks
for successfully computing the quantum behavior of molecules was introduced almost simultaneously by
several groups ([Pfau et al. 2020], [J. Hermann, Schätzle, and Noé 2020], [Choo et al. 2020]), and has
since led to a variety of extensions and improvements [H. Hermann et al. 2022]. However, follow-up
work has mostly focused on applications and iterative improvements to the neural network architectures
introduced in the first set of papers.

At the same time, neural networks using self-attention layers, like the Transformer [Vaswani et al. 2017],
have had a profound impact on much of machine learning. They have led to breakthroughs in natu-
ral language processing [Devlin et al. 2018], language modeling [Brown et al. 2020], image recognition
[Dosovitskiy et al. 2020], and protein folding [Jumper et al. 2021]. The basic self attention layer is
also permutation equivariant, a useful property for applications to chemistry, where physical quantities
should be invariant to the ordering of atoms and electrons [Fuchs et al. 2020]. In [Glehn, Spencer,
and Pfau 2022] presented a novel neural network architecture using self-attention called Wavefunction
Transformer (Psiformer), that can be used as an approximation (or Ansatz) for solving the steady state
many-electron Schrödinger equation. Psiformer is an ab initio method that learns directly from the
fundamental equations governing quantum systems without needing pre-existing datasets. It was the
first work demonstrating that self-attention networks can learn complex quantum mechanical correla-
tions between electrons. However, the method only determines the ground state of quantum mechanical
systems using Transformers but does not solve the time-dependent case. Also, Psiformer is trained indi-
vidually for each specific electron configuration. Thus, recent advancements have introduced the concept
of transferability in neural wavefunction models. In [Scherbela, Gerard, and Grohs 2024], the authors
propose to transform uncorrelated, computationally inexpensive Hartree-Fock orbitals into correlated,
high-accuracy neural network orbitals. This method allows the model to generalize and adapt to various
molecular systems without retraining from scratch for each new configuration. This method enhances the
precision of quantum chemical calculations by more effectively capturing molecule electron correlations.

On the other hand, frameworks like PINNsFormer [Zhao, Ding, and Prakash 2023] can accurately ap-
proximate PDE solutions by utilizing multi-head attention mechanisms to capture temporal dependen-
cies. Empirical results for the Navier-Stokes equations demonstrate that frameworks like PINNsFormer
achieves superior generalization ability and accuracy across various scenarios, including Physics Informed
Neural Networks (PINNs) failure modes and high-dimensional PDEs. In 2024, Herde et al. introduced
POSEIDON, a Multiscale Operator Transformer (MOT) with time-conditioned layer norms, enabling
continuous-in-time evaluations [Herde et al. 2024]. Additionally, it leverages the semi-group property
of time-dependent PDEs to significantly scale up training data. The benefits of this approach include
enhanced sample efficiency and accuracy in learning solution operators for PDEs, as well as improved
generalization to new, unseen physics not encountered during pretraining. POSEIDON was pretrained
on a diverse, large scale dataset for the governing equations of fluid dynamics.
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In this research we are going to develop and pretrain a Transformer-based model QFORMER tailored for
solving the time-dependent Schrödinger equation for arbitrary electron configurations and initial states.
Similar to POSEIDON, we use a MOT to handle multiscale problems by capturing interactions across
different scales, which is essential for accurately solving the Schrödinger equation that exhibit behaviors
at various levels of granularity [Liu, Xu, and Zhang 2022]. We add PINN mechanisms to directly in-
corporate physical constraints of the wave function, like the normalization of the wave function to the
loss function. Our approach involves integrating Poseidon’s multiscale operator transformer architecture
with PINNsFormer’s sequential loss functions and Wavelet activation function. This integration aims to
enhance the model’s capability to capture both multiscale phenomena and temporal dependencies of the
wave function. Additionally, by incorporating the semi-group property of the time-dependent Schrödinger
equation into our training scheme, we seek to further improve efficiency and accuracy. We pretrain the
model on various analytically solvable systems like the Harmonic Oscillator with time-dependent fre-
quency, the Rabi Model, the Landau-Zener problem, systems with periodic Hamiltonians and electrons
in a time-dependent magnetic field. In addition, we use as training data also systems with time inde-
pendent Hamiltonians to enable QFORMER to calculate the energy levels of our system. Therefore we
take datasets used in previous works like [Scherbela, Gerard, and Grohs 2024] into considerations. For
all systems, we consider multiple different initial and boundary conditions for each system if they satisfy
the mathematical and physical properties of the wave function.

As far as we know, this will be the first work pertaining a Transformer model to solve the time-dependent
Schrödinger equation. We expect our model to solve the Schrödinger equation for general complex systems
efficiently and accurately. Combining multiscale operator transformers with physics-informed approaches
is expected to enhance model performance beyond traditional numerical methods. Successfully devel-
oping such a model could revolutionize the computation of quantum mechanical systems by reducing
computational costs and increasing scalability. This advancement would have far-reaching applications
in fields like quantum chemistry, materials science, and physics.
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